Nanomechanics of individual aerographite tetrapods
نویسندگان
چکیده
Carbon-based three-dimensional aerographite networks, built from interconnected hollow tubular tetrapods of multilayer graphene, are ultra-lightweight materials recently discovered and ideal for advanced multifunctional applications. In order to predict the bulk mechanical behaviour of networks it is very important to understand the mechanics of their individual building blocks. Here we characterize the mechanical response of single aerographite tetrapods via in situ scanning electron and atomic force microscopy measurements. To understand the acquired results, which show that the overall behaviour of the tetrapod is governed by the buckling of the central joint, a mechanical nonlinear model was developed, introducing the concept of the buckling hinge. Finite element method simulations elucidate the governing buckling phenomena. The results are then generalized for tetrapods of different size-scales and shapes. These basic findings will permit better understanding of the mechanical response of the related networks and the design of similar aerogels based on graphene and other two-dimensional materials.
منابع مشابه
Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites
In present work, the nano- and microscale tetrapods from zinc oxide were integrated on the surface of Aerographite material (as backbone) in carbon-metal oxide hybrid hierarchical network via a simple and single step magnetron sputtering process. The fabricated hybrid networks are characterized for morphology, microstructural and optical properties. The cathodoluminescence investigations reveal...
متن کاملThree-dimensional Aerographite-GaN hybrid networks: Single step fabrication of porous and mechanically flexible materials for multifunctional applications
Three dimensional (3D) elastic hybrid networks built from interconnected nano- and microstructure building units, in the form of semiconducting-carbonaceous materials, are potential candidates for advanced technological applications. However, fabrication of these 3D hybrid networks by simple and versatile methods is a challenging task due to the involvement of complex and multiple synthesis pro...
متن کاملNanomechanics of the Cartilage Extracellular Matrix.
Cartilage is a hydrated biomacromolecular fiber composite located at the ends of long bones that enables proper joint lubrication, articulation, loading, and energy dissipation. Degradation of extracellular matrix molecular components and changes in their nanoscale structure greatly influence the macroscale behavior of the tissue and result in dysfunction with age, injury, and diseases such as ...
متن کاملNanomechanics of individual carbon nanotubes from pyrolytically grown arrays.
The bending modulus of individual carbon nanotubes from aligned arrays grown by pyrolysis was measured by in situ electromechanical resonance in transmission electron microscopy (TEM). The bending modulus of nanotubes with point defects was approximately 30 GPa and that of nanotubes with volume defect was 2-3 GPa. The time-decay constant of nanotube resonance in a vacuum of 10(-4) Torr was appr...
متن کاملThe Nanomechanics of Lipid Multibilayer Stacks Exhibits Complex Dynamics.
The nanomechanics of lipid membranes regulates a large number of cellular functions. However, the molecular mechanisms underlying the plastic rupture of individual bilayers remain elusive. This study uses force clamp spectroscopy to capture the force-dependent dynamics of membrane failure on a model diphytanoylphosphatidylcholine multilayer stack, which is devoid of surface effects. The obtaine...
متن کامل